
Appendix A: Justification of the Bootstrap

A classic example of bootstrap failure occurs when one considers the maximum

of a series of observations and one may question whether something similar is

occurring in this context. Let Z1, Z2, . . . , Zn be independently and identically dis-

tributed uniform random variables on the interval given by [0, θ] with θ unknown

and suppose confidence intervals for θ are sought. Let T = max{Z1, . . . , Zn}.

Then it may be shown that

Q = n(θ − T )/θ → standard exponential distribution. (A.1)

Now consider an obvious bootstrap procedure to elicit information regarding θ:

let t = observed T , T ∗ denote the maximum value observed in a bootstrap sample

of Z1, Z2, . . . , Zn and Q∗ = n(t − T ∗)/t. For the bootstrap procedure to work in

any meaningful way it should be the case that Q∗ also converge to a standard

exponential distribution. However it is easy to see that if Z(n) is in the bootstrap

sample we have Q∗ = 0. Further, bootstrap sampling with replacement implies

Prob(Q∗ = 0) = Prob(Z(n) in bootstrap sample ) = 1−
(

n− 1

n

)n

→ .632 (A.2)

Consequently the limiting distribution of Q∗ contains a point mass at 0 with

probability .632 so clearly the limiting distribution of Q∗ cannot be exponential.

This problem does not arise in the context presented here (investigating the

distribution of τrG
) as the maximum is taken over G variables, the number of

which is fixed. In the failing example given above the maximum is taken over n

observations – an index that increases asymptotically.
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To give a more formal justification of why the bootstrap is appropriate for this

overestimation problem we demonstrate that

τrG
=

√
n

(
d̄rG

− µrG

)
√

2 srG

and τ ∗r∗G =

√
n

(
d̄∗r∗G − d̄r∗G

)
√

2 sr∗G

(A.3)

have the same asymptotic distribution, i.e. the bootstrap procedure works in at

least an asymptotic sense. Let r0
1, r

0
2, . . . , r

0
G order the true effect sizes,

µr0
1

σr0
1

≤
µr0

2

σr0
2

≤ · · · ≤
µr0

G

σr0
G

(A.4)

To proceed further we will focus upon τrG
in the simple and common situation

that there exists a single variable/gene with maximal true effect size greater than

all other effect sizes, i.e.

µr0
G

σr0
G

>
µj

σj

for all j 6= r0
G. (A.5)

Recall that

tj = τj +

√
n µj√
2 sj

where τj =

√
n

(
d̄j − µj

)
√

2sj

(A.6)

so for j 6= r0
G we have

Pr
[
tr0

G
> tj

]
= Pr

[
τr0

G
+

√
n µr0

G√
2 sr0

G

> τj +

√
n µj√
2 sj

]
. (A.7)

From (A.5) and the realization that the τ terms are governed by a t−distribution it

is clear the term

√
n µ

r0
G√

2 s
r0
G

will dominate the inequality above so that with probability

1 tr0
G

will exceed tj as n → ∞. As this holds for all j 6= r0
G this implies rG → r0

G

with probability 1. From similar reasoning one can deduce that this behavior

also occurs in the bootstrap sample so that r∗G → rG → r0
G with probability
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1 (assuming the number of bootstrap replications increases to ∞ with n). So,

because r∗G → r0
G this implies

√
n

(
d̄∗r∗G − d̄r∗G

)
√

2s∗r∗G

−

√
n

(
d̄∗

r0
G
− d̄r0

G

)
√

2s∗
r0
G

→ 0 with probability 1, or (A.8)

τ ∗r∗G → τ ∗r0
G

=

√
n

(
d̄∗

r0
G
− d̄r0

G

)
√

2s∗
r0
G

. (A.9)

For a fixed index, e.g. r0
G, it is well known that under general conditions the

bootstrap has appropriate asymptotic behavior (Bickel and Freedman, 1981), i.e.

τ ∗r0
G

=

√
n

(
d̄∗

r0
G
− d̄r0

G

)
√

2s∗
r0
G

and τr0
G

=

√
n

(
d̄r0

G
− µr0

G

)
√

2sr0
G

(A.10)

both converge weakly to a Gaussian distribution. From (A.9) and (A.10) this

means

τ ∗r∗G =

√
n

(
d̄∗r∗G − d̄r∗G

)
√

2s∗r∗G

converges in distribution to N(0, 1). (A.11)

Similarly, because rG → r0
G with probability 1 this means

τrG
converges with probability 1 to τr0

G
=

√
n

(
d̄r0

G
− µr0

G

)
√

2sr0
G

(A.12)

where the right hand term has a t−distribution and hence also converges to a

N(0, 1) distribution. Consequently it has been demonstrated that both τ ∗r∗G and

τrG
have the same limiting distribution and thus the use of the bootstrap is justified

in this asymptotic sense.
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Appendix B: Calculation of the Bias

Here an effort is made to sketch the degree of bias that may be expected and link

this magnitude to some factors such as sample size, distribution of true effect sizes,

and the number of tests. Simplifying assumptions will be employed as necessary.

Here attention will be focused upon τrG
though analogous results hold for τr1 .

One may write

E [τrG
] =

G∑
j=1

E [τrG
|rG = j ] P [rG = j] . (B.1)

Then E [τrG
|rG = j ] P [rG = j] =

(∫
τfτj | rG=j (τ) dτ

)
P [rG = j] (B.2)

=

∫
τfτj

(τ, rG = j) dτ

P [rG = j]
P [rG = j] (B.3)

=

∫
τfτj

(τ, rG = j) dτ (B.4)

where fτj | rG=j is the conditional distribution of τj given rG = j and fτj
(τ, rG = j)

describes the joint distribution of τj and the event rG = j.

Now rG = j if and only if tj > max
k 6=j

tk (B.5)

if and only if τrj
> max

k 6=j

(
τk +

√
n√
2

(
µk

sk

− µj

sj

))
. (B.6)

To simplify we will approximate the sj and sk terms by σj and σk. Then we obtain

E [τrG
] =

G∑
j=1

∫
τfτj

(τ, rG = j) dτ (B.7)

≈
G∑

j=1

E

[∫ ∞

M−j

τfτ (τ) dτ

]
(B.8)

where M−j = max
k 6=j

(
τk +

√
n√
2

(
µk

σk

− µj

σj

))
(B.9)
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fτ denotes a t−distribution with 2n−2 degrees of freedom and the expectation in

(B.8) is necessary because M−j contains random elements τk. To simplify further

we will approximate fτ by a standard Gaussian distribution and assume the G

variables are independent. Then we may rewrite terms as

E [τrG
] ≈ 1√

2π

G∑
j=1

E

[
e
−M2

−j
2

]
(B.10)

From (B.10) one sees that bias is inversely related to the absolute value of the

M−j terms. Some consequences of this derivation are as follows.

Consider the effect of increasing the sample size holding all else constant. It

is worthwhile to examine M−j for the case when j = r0
G and j 6= r0

G separately

where we assume only one variable (with index r0
G) has the most positive effect

size, i.e. there are no ties. Then

lim
n→∞

M−j = lim
n

max
k 6=j

(
τk +

√
n√
2

(
µk

σk

− µj

σj

))
(B.11)

= −∞ if j = r0
G (B.12)

=∞ if j 6= r0
G. (B.13)

In either case we have that M2
−j →∞ so from (B.10) one sees E [τrG

] ≈ 0.

The case for expanding the differences among effect sizes is similar – at least

for the simplified example below. For a given pattern of effect sizes among the

G variables (again with no ties for the most extreme effect size), consider a new

pattern of effect sizes given by multiplying each original effect by a constant c > 0.
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Then if r0
G designates the most positive effect size

lim
c→∞

M−j = lim
c

max
k 6=j

(
τk + c

√
n√
2

(
µk

σk

− µj

σj

))
(B.14)

= −∞ if j = r0
G (B.15)

=∞ if j 6= r0
G. (B.16)

Consequently the same conclusion of no bias follows. If one reverses the limiting

action of c so that c → 0 from above then

lim
c↓0

M−j = max
k 6=j

τk (B.17)

where the τk are identically and independently distributed t−statistics and the

bias is then positive. This conclusion is applicable situation to the situation of no

variables showing differential expression.

The case for increasing G, the number of variables is less clear cut as it de-

pends upon the combination of effect sizes. As an example, suppose originally,

all true effect sizes are equal (either zero or not) – then there will be non-trivial

overestimation. If one additional variable is added that has a much larger effect

size then as demonstrated in Table 3 this may reduce or eliminate the bias. Then

if an additional variable is added with the same larger effect size some degree

of overestimation will then by reintroduced. Empirically it seems that adding

variables with effect sizes at or near the size of the largest preexisting effect sizes

exaggerates the bias effects for µrG
. In terms of figuring the change of M−j terms

as above there is more ambiguity as some terms M2
−j terms will likely increase,

others decrease, and some new terms will be introduced.
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